

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Groupy 0.5.0 documentation

Welcome to Groupy!

The simple yet powerful wrapper for the GroupMe API

Introduction

GroupMe is a messaging app that allows you to create groups and have others
join them with you. In addition to group messaging, fellow group members can be
messaged directly. GroupMe is available for most platforms, lets you share
links, images, and locations, and messages can be favorited (or “liked”). You
can read more about GroupMe [http://groupme.com], but the best part about it is that they provide
an API!

The GroupMe API is documented, but there are some notable omissions. Many of
the properties of groups and messages are not documented, and some features are
only hinted at by the documentation. Regardless, all of the information about
your groups, their members, their messages, you, and your bots can be obtained
through the GroupMe API. You can read the API documentation [http://dev.groupme.com] for more (or
less) detailed information.

But Groupy lets you forget about the GroupMe API and focus on what you need
to get done!

Features

	List and filter your current and former groups

	Create, destroy, and update your groups

	Add members to and remove members from groups

	List and filter messages from groups and members

	Post new messages to groups

	Send direct messages to members

	List and filter the members of a group

	Like and unlike messages (even direct messages!)

	List and filter your bots

	Use your bots to post messages

	Create, update, and destroy bots

	Get your user information

	Enable and disable SMS mode

Table of Contents

	Installation
	Using pip

	From Source

	Basic Usage
	Listing Things

	Groups

	Messages

	Members

	Groups and Members

	GroupMe and You

	Bots

	Advanced Usage
	Attachments

	Developer Docs
	The config Module

	The endpoint Module

	The errors Module

	The status Module

	The responses Module

	The attachments Module

	The listers Module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Groupy 0.5.0 documentation

Installation

You’ll need to get a GroupMe account [http://groupme.com] to get started. Got it? Okay, now
you’ll need to obtain your access token so you can make API requests:

	Login to the developer portal [https://dev.groupme.com/session/new].

	Click the “Bots” button on the top menu bar.

	Click the “Click here to reveal” button and copy your access token.

	Paste it into a new file called .groupy.key and save it in your user’s
home directory.

Now you’re ready to install Groupy!

Using pip

Note

Installation via pip coming soon!

From Source

	Download Groupy from GitHub [http://github.com/rhgrant10/Groupy].

	Copy the package directory (Groupy/groupy) into your package directory
for Python3.

If you have git, it’s as easy as:

$ git clone https://github.com/rhgrant10/Groupy.git
$ cd Groupy
$ cp -r groupy /usr/lib/python3/dist-packages # see note below

If you don’t have git installed (and don’t wish to install it), that’s okay
too! You can get the project as a zip file using wget:

$ wget https://github.com/rhgrant10/Groupy/archive/master.zip
$ unzip master.zip
$ cd Groupy-master
$ cp -r groupy /usr/lib/python3/dist-packages # see note below

If neither git nor wget are on your system (for example, you might have
Windows installed rather than a flavor of Linux), that’s still okay! Simply
click this link to download it using your browser [https://github.com/rhgrant10/Groupy/archive/master.zip] as a zip file.

Note

See this StackOverflow question [http://stackoverflow.com/questions/122327/how-do-i-find-the-location-of-my-python-site-packages-directory] for help determining the right location.

There, all done! Feels good, right?

 Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Groupy 0.5.0 documentation

Basic Usage

This page gives an overview of all but the most advanced features of Groupy.

First, you’ll want to make sure that

	Groupy is installed

	Groupy can find your API key

See the Installation page for instructions. Now that that’s out of the
way, let’s get started!

Listing Things

The most basic operation is listing things.
Groups,
Members, and
Bots can be listed directly.

>>> import groupy
>>> groups = groupy.Group.list()
>>> members = groupy.Member.list()
>>> bots = groupy.Bot.list()

The object lists are returned as a
FilterList. These behave just like the
built-in list [http://docs.python.org/3/library/stdtypes.html#list] does with some convenient functionality:
first and
last.

>>> groups.first == groups[0]
True
>>> groups.last == groups[-1]
True

The most useful feature of a FilterList,
however, is its filter() method. It
parses whatever keyword arguments are passed to it and filters the list such
that only the items meeting all criteria are included. The keywords correspond
to object properties, but also indicate how to test the relation to the value
of the keyword argument. Thus a keyword-value pair such as name='Bob' would
keep only those items with a name property equal to "Bob", whereas a
pair like age__lt=20 keeps only those items with an age property less
than 20.

Some simple examples:

>>> from groupy import Group
>>> groups = Group.list()
>>> for g in groups:
... print(g.name)
...
My Family
DevTeam #6
Friday Night Trivia
>>> for g in groups.filter(name__contains='am'):
... print(g.name)
My Family
DevTeam #6
>>>
>>> members = groups.first.members()
>>> for m in members:
... print(m.nickname)
...
Dan the Man
Manuel
Fred
Dan
>>> for m in members.filter(nickname='Dan'):
... print(m.nickname)
...
Dan
>>> for m in members.filter(nickname__contains='Dan'):
... print(m.nickname)
...
Dan the Man
Dan
>>> for m in members.filter(nickname__ge='F'):
... print(m.nickname)
...
Manuel
Fred

Groups

From a Group, you can list its
Members and
Messages.

>>> from groupy import Group
>>> groups = Group.list()
>>> group = groups.first
>>> messages = group.messages()
>>> members = group.memers()

A group returns all of its members in a single list. So determining the number
of members in a group should be a familiar task.

>>> len(members)
5

Messages, however, are a different matter.
Since there may be thousands of messages in a group, messages are returned in
pages. The default (and maximum) number of messages per page is 100. To
determine the total number of messages in a group, simply access the
message_count attribute. Additional pages of messages can be obtained using
older() and
newer().

>>> len(messages)
100
>>> group.message_count
3014
>>> older = messages.older()
>>> newer = messages.newer()

There are also methods for collecting a newer or older page of messages into
one list: iolder() and
inewer(). An example of using the
former to retrieve all messages in a group:

>>> from groupy import Group
>>> group = Group.list().first
>>> messages = group.messages()
>>> while messages.iolder():
... pass
>>> len(messages) == group.message_count
True

Often you’ll want to post a new message to a group. New messages can be posted
to a group using its post() method.

>>> from group import Group
>>> group = Group.list().first
>>> group.post('Hello to you')
>>> print(group.messages().newest.text)
'Hello to you'

Note

Posting a message does not affect message_count. However, retrieving
any page of messages does update it.

Groups have many attributes, some of which
can be changed.

>>> group.name
'My Family'
>>> group.image_url
'http://i.groupme.com/a01b23c45d56e78f90a01b12c3456789'
>>> group.description
'Group of my family members - so we can keep up with each other.'
>>> group.update(name="My Group of Family Members")
>>> group.name
'My Group of Family Members'
>>> group.update(name="[old] Family Group", description="The old family group")
>>> group.name
'[old] Family Group'
>>> group.description
'The old family group'

Some Groups also have a share_url that
others can visit to join the group.

>>> group.share_url
'https://groupme.com/join_group/1234567890/SHARE_TOKEN'

Beware that not every group is created with a share link, in which case the
value of share_url would be None. However, this can be changed in the
same way as other group information.

>>> print(group.share_url)
None
>>> group.update(share=True)
>>> group.share_url
'https://groupme.com/join_group/1234567890/SHARE_TOKEN'

Note

The SHARE_TOKEN is specific to each group’s share link.

The remainder of a Groups aattributes cannot
be changed. Some more important ones are shown below.

>>> group.group_id
'1234567890'
>>> group.creator_user_id
'0123456789'
>>> print(group.created_at)
2013-12-25 9:53:33
>>> print(group.updated_at)
2013-12-26 4:21:08

Messages

Unlike Groups,
Members, and
Bots,
Messages cannot be listed directly.
Instead, Messages are listed either from
Group or
Member instances.

To list the messages from a group, use a group’s
messages() method.

>>> from groupy import Group
>>> group = Group.list().first
>>> messages = group.messages()

To list the messages from a member, use a member’s
messages() method.

>>> from groupy import Member
>>> member = Member.list().first
>>> messages = member.messages()

Messages have several properties. Let’s look at a few of them. Messages have a
timestamp indicating when the message was created.

>>> message = messages.newest
>>> message.created_at
2014-4-29 12:19:05

As with other API objects, timestamp data is returned as
datetime.datetime [http://docs.python.org/3/library/datetime.html#datetime.datetime] instances.

Messages also contain information about the member who posted it.

>>> message.user_id
'0123456789'
>>> message.name
'Kevin'
>>> message.avatar_url
'http://i.groupme.com/a01b23c45d56e78f90a01b12c3456789'

Of course, messages have text and attachments. A message may or may not have
text or attachments, but every message must have one or the other.

>>> message.text
'Hello'
>>> message.attachments
[Image(url='http://i.groupme.com/a01b23c45d56e78f90a01b12c3456789')]

Note

Although the majority of messages will have just one attachment, there is
no limit on the number of attachments. In fact, despite most clients being
incapable of displaying them, the API doesn’t even limit the number of each
kind of attachment. For example, a single message might have two images,
three locations, and one emoji.

There are multiple types of messages. System messages are messages that are not
sent by a member, but generated by member actions. Many things generate system
messages, including member changes, group updates (name, avatar, etc.), member
changes (nickname, avatar, etc.), and changing the topic.

Additionally there are group messages and direct messages. Group messages are
messages in a group, whereas direct messages are messages between two members.

Each message has a few properties that can be used to differentiate the types.

>>> message.group_id
'1234567890'
>>> message.recipient_id
None
>>> message.system
False

In the above example, we can see that message.system is False, which
indicates that the message was sent by a member, not the system. We can also
see that although the message has a message.group_id, it does not have a
message.recipient_id, which means it is a group message. Had it been a
system message, message.system would have been True. Had it been a
direct message, message.group_id would have been None and
message.recipient_id would contain a valid user ID.

Lastly, each message contains a list of user IDs to indicate which members have
“liked” it.

>>> message.favorited_by
['2345678901', '3456789012']

Because often more information about the member is desired, a list of actual
Member instances can be retrieved using the
likes() method.

>>> message.likes()
[Rob, Jennifer, Vlad]

Messages can also be liked and unliked.

>>> message.like()
True
>>> message.unlike()
True

Note

Currently, the message instance itself does not update its own
attributes. You must re-fetch the message.

Members

Member instances represent other GroupMe
users. Finding members can be accomplished in one of three ways.

Firstly, members may be listed from a group. This lists just the members of a
particular group.

>>> from groupy import Group
>>> group = Group.list().first
>>> members = group.members()

Secondly, members may be listed from a message. This lists just the members who
have “liked” a particular message.

>>> messages = group.messages()
>>> message = message.newest
>>> members = message.likes()

Lastly, all the members you’ve seen thus far can be listed directly.

>>> from groupy import Member
>>> members = Member.list()

Note

Although many attributes of a member are specific to a particular group,
members listed in this fashion are taken from a single group with one
exception: the nickname of each member listed from
list() is the most frequent of the
names that the member uses among the groups of which you are both members.

Each member has a user ID, a nickname, and a URL indicating their avatar image
that are specific to the group from which the member was listed.

>>> member = members.first
>>> member.user_id
'0123456789'
>>> member.nickname
'Bill'
>>> member.avatar_url
'http://i.groupme.com/a01b23c45d56e78f90a01b12c3456789'

Members have one more property of interest: muted. This indicates whether
the member has that group muted.

>>> member1, member2 = members[:2]
>>> member1.muted
False
>>> member2.muted
True

Messaging a member and retrieving the messages between you and the member is
done in the same way as when messaging a group.

>>> member.post("Hello")
>>> member.messages().newest.text
'Hello'

Groups and Members

Members can be added and removed from groups. Adding one or multiple members to
a group is quite intuitive. The following examples assume that no one from
group1 is a member of group2 (although the API doesn’t care if you add
a member who is already a member).

>>> from groupy import Group
>>> group1, group2 = Group.list()[:2]
>>> member = group1.members().first
>>> group2.add(member)

Multiple members can be added simultaneously as well. Suppose you wanted to add
everyone from group1 to group2.

>>> group2.add(*group1.members())

Removing members, however, must be done one at a time:

>>> for m in group2.members():
... group2.remove(m)
...

GroupMe and You

One of the most basic pieces of information you’ll want to obtain is your own!
Groupy makes this very simple:

>>> from groupy import User
>>> your_info = User.get()

It contains your GroupMe profile/account information and settings:

>>> print(your_info.user_id)
12345678
>>> print(your_info.name)
Billy Bob <-- the MAN!
>>> print(your_info.image_url)
http://i.groupme.com/a01b23c45d56e78f90a01b12c3456789
>>> print(your_info.sms)
False
>>> print(your_info.phone_number)
+1 5055555555
>>> print(your_info.email)
bb@example.com

It also contains some meta information:

>>> print(your_info.created_at)
2011-3-14 14:11:12
>>> print(your_info.updated_at)
2013-4-20 6:58:26

created_at and updated_at are returned as datetime [http://docs.python.org/3/library/datetime.html#datetime.datetime]
objects.

Bots

Bots can be a useful tool because each has a callback URL to which every
message in the group is POSTed. This allows your bot the chance to do... well,
something (whatever that may be) in response to every message!

Note

Keep in mind that bots can only post messages to groups, so if anything
else is going to get done, it’ll be done by you, not your bot. That means
adding and removing users, liking messages, direct messaging a member, and
creating or modifying group will be done under your name.

Bot creation is simple. You’ll need to give the bot a name and associate it
with a specific group.

>>> from groupy import Bot, Group
>>> group = Group.list().first
>>> bot = Bot.create('R2D2', group)

bot is now the newly created bot and is ready to be used. If you want, you
can also specify a callback URL (recommened), as well as an image URL to be
used for the bot’s avatar.

Just about the only thing a bot can do is post a message to a group. Groupy
makes it easy:

>>> from group import Bot
>>> bot = Bot.list().first
>>> bot.post("I'm a bot!")

Note that the bot always posts its messages to the group in which it belongs.
You can create multiple bots. Listing all of your bots is straightforward.

>>> from groupy import Bot
>>> bots = Bot.list()

Now bots contains a list of all of your bots.

 Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Groupy 0.5.0 documentation

Advanced Usage

This part of the documentation contains explanations and examples of more
complex aspects of Groupy.

Attachments

Messages can contain various types of
Attachments. Currently, Groupy supports
the following types of attachments:

	Image - for images

	Location - for locations

	Split - [*]

	Emoji - for emoticons

	Mentions - for “@” mentions

	[*]	This type of attachment will be depreciated soon.

Each of these classes has a create() method that accepts arguments
specific to it’s class.

Types

Locations

Location attachments are the simplest of all attachment types. Each includes
a name, a latitude, and a longitude.

>>> loc = groupy.Location.create('My house', lat=34, lng=-84.3)

Some location attachments also contain a foursqure_venue_id.

Images

Image attachments are unique in that they do not actually contain the image
data.

Emojis

Emojis are relatively undocumented but frequently appear in messages.

Mentions

Mentions are a new type of attachment and is yet undocumented.

Splits

This type of attachment is not only largely undocumented, it is depreciated.

 Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Groupy 0.5.0 documentation

Developer Docs

This section of the documentation is for other developers, and contains the
complete information about each package, module, class, and method.

The config Module

The config module contains all the configuration options.

	
groupy.config.API_URL = 'https://api.groupme.com/v3'

	The URL for the GroupMe API

	
groupy.config.IMAGE_API_URL = 'https://image.groupme.com'

	The URL for the GroupMe Image Service API

	
groupy.config.KEY_LOCATION = '~/.groupy.key'

	Full path to the file in which your access token can be found

The endpoint Module

	
class groupy.api.endpoint.Bots[source]

	Endpoint for the bots API.

Bots can be listed, created, updated, and destroyed. Bots can also post
messages to groups.

	
classmethod create(name, group_id, avatar_url=None, callback_url=None)[source]

	Create a new bot.

	Parameters:	
	name (str [http://docs.python.org/3/library/stdtypes.html#str]) – the name of the bot

	group_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group to which the bot will belong

	avatar_url (str [http://docs.python.org/3/library/stdtypes.html#str]) – the GroupMe image URL for the bot’s avatar

	callback_url (str [http://docs.python.org/3/library/stdtypes.html#str]) – the callback URL for the bot

	Returns:	the new bot

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod destroy(bot_id)[source]

	Destroy a bot.

	Parameters:	bot_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the bot to destroy

	
classmethod index()[source]

	List bots.

	Returns:	a list of bots

	Return type:	list [http://docs.python.org/3/library/stdtypes.html#list]

	
classmethod post(bot_id, text, picture_url=None)[source]

	Post a message to a group as a bot.

	Parameters:	
	bot_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the bot

	text (str [http://docs.python.org/3/library/stdtypes.html#str]) – the message text

	picture_url (str [http://docs.python.org/3/library/stdtypes.html#str]) – the GroupMe image URL for a picture

	Returns:	the created message

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
class groupy.api.endpoint.DirectMessages[source]

	Endpoint for the direct message API.

	
classmethod create(recipient_id, text, *attachments)[source]

	Create a direct message to a recipient user.

	Parameters:	
	recipient_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the recipient

	text (str [http://docs.python.org/3/library/stdtypes.html#str]) – the message text

	attachments (list [http://docs.python.org/3/library/stdtypes.html#list]) – a list of attachments to include

	Returns:	the created direct message

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod index(other_user_id, before_id=None, since_id=None, after_id=None)[source]

	List the direct messages with another user.

	Parameters:	
	other_user_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the other party

	before_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – a reference message ID; specify this to list
messages prior to it

	Returns:	a list of direct messages

	Return type:	list [http://docs.python.org/3/library/stdtypes.html#list]

	
class groupy.api.endpoint.Endpoint[source]

	An API endpoint capable of building a url and extracting data from the
response.

This class serves as the base class for all of the API endpoints.

	
classmethod build_url(path=None, *args)[source]

	Build and return a url extended with path and filled in with
args.

	Parameters:	
	path (str [http://docs.python.org/3/library/stdtypes.html#str]) – a suffix for the final URL. If args are present,
this should be a python format string pertaining to the given
args.

	args (list [http://docs.python.org/3/library/stdtypes.html#list]) – a list of arguments for the format string path.

	Returns:	a complete URL

	Return type:	str

	
static clamp(value, lower, upper)[source]

	Utility method for clamping a value between a lower and an
upper value.

	Parameters:	
	value – the value to clamp

	lower – the “smallest” possible value

	upper – the “largest” possible value

	Returns:	value such that lower <= value <= upper

	
classmethod response(r)[source]

	Extract the data from the API response r.

This method essentially strips the actual response of the envelope.

	Parameters:	r (requests.Response [http://docs.python-requests.org/en/latest/api/#requests.Response]) – the HTTP response from an API call

	Returns:	API response data

	Return type:	JSON

	
class groupy.api.endpoint.Groups[source]

	Endpoint for the groups API.

Groups can be listed, loaded, created, updated, and destroyed.

	
classmethod create(name, description=None, image_url=None, share=True)[source]

	Create a new group.

	Parameters:	
	name (str [http://docs.python.org/3/library/stdtypes.html#str]) – the name of the new group

	description (str [http://docs.python.org/3/library/stdtypes.html#str]) – the description of the new group

	image_url (str [http://docs.python.org/3/library/stdtypes.html#str]) – the group avatar image as a GroupMe image URL

	share (bool [http://docs.python.org/3/library/functions.html#bool]) – True if a link to join should be generated, False
otherwise

	Returns:	the new group

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod destroy(group_id)[source]

	Destroy (or leave) a group.

Note

If you are not the owner of a group, you can not destroy it.

	Parameters:	group_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group to destroy/leave

	
classmethod index(page=1, per_page=500, former=False)[source]

	Return a list of groups.

	Parameters:	
	page (int [http://docs.python.org/3/library/functions.html#int]) – the page of groups to return

	per_page (int [http://docs.python.org/3/library/functions.html#int]) – the number of groups in the page

	former (bool [http://docs.python.org/3/library/functions.html#bool]) – True if former groups should be listed instead of
current groups, False otherwise

	Returns:	a list of groups

	Return type:	list [http://docs.python.org/3/library/stdtypes.html#list]

	
classmethod show(group_id)[source]

	Return a specific group by its group_id.

	Parameters:	group_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group to show.

	Returns:	the group with the given group_id

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod update(group_id, name=None, description=None, share=None, image_url=None)[source]

	Update the information for a group.

	Parameters:	
	group_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group to update

	name (str [http://docs.python.org/3/library/stdtypes.html#str]) – the new name of the group

	description (str [http://docs.python.org/3/library/stdtypes.html#str]) – the new description of the group

	share (bool [http://docs.python.org/3/library/functions.html#bool]) – True if a share link should be generated, False
otherwise

	image_url (str [http://docs.python.org/3/library/stdtypes.html#str]) – the GroupMe image URL for the new group avatar.

	Returns:	the modified group

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
class groupy.api.endpoint.Images[source]

	Endpoint for the image service API.

GroupMe images are created through an upload service that returns a URL at
which it can be accessed.

	
classmethod create(image)[source]

	Submit a new image.

	Parameters:	image (file) – object with a file-like interface and containing an
image

	Returns:	the URL at which the image can be accessed

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod response(r)[source]

	Extract the data from the image service API response r.

This method basically returns the inner “payload.”

	Parameters:	r (requests.Response [http://docs.python-requests.org/en/latest/api/#requests.Response]) – the HTTP response from an API call

	Returns:	API response data

	Return type:	json

	
class groupy.api.endpoint.Likes[source]

	Endpoint for the likes API.

Likes can be created or destroyed.

Note

The conversation_id is poorly documented. For messages in a group,
it corresponds to the group_id (or id since they seem to always
be identical). For direct messages, it corresponds to the user_id of
both conversation participants sorted lexicographically and concatenated
with a plus sign (“+”).

	
classmethod create(conversation_id, message_id)[source]

	Like a message.

	Parameters:	
	conversation_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group or recipient

	message_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the message

	
classmethod destroy(conversation_id, message_id)[source]

	Unlike a message.

	Parameters:	
	conversation_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group or recipient

	message_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the message

	
class groupy.api.endpoint.Members[source]

	Endpoint for the members API.

Members can be added and removed from a group, and the results of adding
members can be obtained.

	
classmethod add(group_id, *members)[source]

	Add one or more members to a group.

	Parameters:	
	group_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group to which the members should
be added

	members (list [http://docs.python.org/3/library/stdtypes.html#list]) – the members to add.

	Returns:	the results_id for this request

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod remove(group_id, member_id)[source]

	Remove a member from a group.

	Parameters:	
	group_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group from which the member should
be removed

	member_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the member to remove

	
classmethod results(group_id, result_id)[source]

	Check the result of adding one or more members.

	Parameters:	
	group_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group to which the add call was made

	result_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the GUID returned by the add call

	Returns:	a list of successfully added members

	Return type:	list [http://docs.python.org/3/library/stdtypes.html#list]

	
class groupy.api.endpoint.Messages[source]

	Endpoint for the messages API.

Messages can be listed and created.

	
classmethod create(group_id, text, *attachments)[source]

	Create a new message in a group.

All messages must have either text or one attachment. Note that while
the API provides for an unlimited number of attachments, most clients
can only handle one of each attachment type (location, image, split, or
emoji).

	Parameters:	
	group_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group in which to create the message

	text (str [http://docs.python.org/3/library/stdtypes.html#str]) – the text of the message

	attachments (list [http://docs.python.org/3/library/stdtypes.html#list]) – a list of attachments to include

	Returns:	the created message

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod index(group_id, before_id=None, since_id=None, after_id=None, limit=100)[source]

	List the messages from a group.

Listing messages gives the most recent 100 by default. Additional
messages can be obtained by specifying a reference message, thereby
facilitating paging through messages.

Use before_id and after_id to “page” through messages.
since_id is odd in that it returns the most recent messages
since the reference message, which means there may be messages missing
between the reference message and the oldest message in the returned
list of messages.

Note

Only one of before_id, after_id, or since_id can be
specified in a single call.

	Parameters:	
	group_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the ID of the group from which to list messages

	before_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – a reference message ID; specify this to list
messages just prior to it

	since_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – a reference message ID; specify this to list
the most recent messages after it
(not the messages right after the reference message)

	after_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – a reference message ID; specifying this will
return the messages just after the reference message

	limit (int [http://docs.python.org/3/library/functions.html#int]) – a limit on the number of messages returned (between
1 and 100 inclusive)

	Returns:	a dict [http://docs.python.org/3/library/stdtypes.html#dict] containing count and messages

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
class groupy.api.endpoint.Sms[source]

	Endpoint for the SMS API.

SMS mode can be enabled or disabled.

	
classmethod create(duration=4, registration_id=None)[source]

	Enable SMS mode.

	Parameters:	
	duration (int [http://docs.python.org/3/library/functions.html#int]) – duration of SMS mode in hours (max of 48)

	registration_id (str [http://docs.python.org/3/library/stdtypes.html#str]) – the push registration_id or token to
suppress (if omitted, SMS and push notifications will both
be enabled)

	
classmethod delete()[source]

	Disable SMS mode.

	
class groupy.api.endpoint.Users[source]

	Endpoint for the users API.

	
classmethod me()[source]

	Get the user’s information.

	Returns:	the user’s information

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

The errors Module

The error module contains all of the exceptions thrown by the
GroupMe API.

	
exception groupy.api.errors.GroupMeError[source]

	A general GroupMe error.

	
exception groupy.api.errors.InvalidOperatorError[source]

	Error thrown when an unsupported filter is used.

	
exception groupy.api.errors.InvalidResponseError[source]

	Error representing an unparsable response from the API.

The status Module

The status module contains API response status code constants and a method
that returns the textual description of such a constant.

	
groupy.api.status.OK = 200

	Success

	
groupy.api.status.CREATED = 201

	Resource was created successfully

	
groupy.api.status.NO_CONTENT = 204

	Resource was deleted successfully

	
groupy.api.status.NOT_MODIFIED = 304

	There was no new data to return

	
groupy.api.status.BAD_REQUEST = 400

	Invalid format or invalid data is specified in the request

	
groupy.api.status.UNAUTHORIZED = 401

	Authentication credentials were missing or incorrect

	
groupy.api.status.FORBIDDEN = 403

	The request was understood, but it has been refused

	
groupy.api.status.NOT_FOUND = 404

	The URI requested is invalid or the requested resource does not exist

	
groupy.api.status.ENHANCE_YOUR_CLAIM = 420

	You are being rate limited

	
groupy.api.status.INTERNAL_SERVER_ERROR = 500

	Something unexpected occurred

	
groupy.api.status.BAD_GATEWAY = 502

	GroupMe is down or being upgraded

	
groupy.api.status.SERVICE_UNAVAILABLE = 503

	The GroupMe servers are up but overloaded with requests

	
groupy.api.status.description(code)[source]

	Return the text description for a code.

	Parameters:	code (int [http://docs.python.org/3/library/functions.html#int]) – the HTTP status code

	Returns:	the text description for the status code

	Return type:	str [http://docs.python.org/3/library/stdtypes.html#str]

The responses Module

	
class groupy.object.responses.Recipient(endpoint, mkey, idkey, **kwargs)[source]

	Base class for Group and Member.

Recipients can post and recieve messages.

	Parameters:	
	endpoint (Endpoint) – the API endpoint for messages

	mkey (str [http://docs.python.org/3/library/stdtypes.html#str]) – the dict [http://docs.python.org/3/library/stdtypes.html#dict] key under which the endpoint returns
messages

	idkey (str [http://docs.python.org/3/library/stdtypes.html#str]) – the dict [http://docs.python.org/3/library/stdtypes.html#dict] key whose value represents the key for
posting and retrieving messages

	
messages(before=None, since=None, after=None, limit=None)[source]

	Return a page of messages from the recipient.

	Parameters:	
	before (str [http://docs.python.org/3/library/stdtypes.html#str]) – a reference message ID

	since (str [http://docs.python.org/3/library/stdtypes.html#str]) – a reference message ID

	after (str [http://docs.python.org/3/library/stdtypes.html#str]) – a reference message ID

	limit (int [http://docs.python.org/3/library/functions.html#int]) – maximum number of messages to include in the page

	Returns:	a page of messages

	Return type:	MessagePager

	
post(text, *attachments)[source]

	Post a message to the recipient.

Although the API limits messages to 450 characters, this method will
split the text component into as many as necessary and include the
attachments in the final message. Note that a list of messages sent is
always returned, even if it contains only one element.

	Parameters:	
	text (str [http://docs.python.org/3/library/stdtypes.html#str]) – the message text

	attachments (list [http://docs.python.org/3/library/stdtypes.html#list]) – the attachments to include

	Returns:	a list of raw API responses (sorry!)

	Return type:	list [http://docs.python.org/3/library/stdtypes.html#list]

	
class groupy.object.responses.Group(**kwargs)[source]

	A GroupMe group.

	
add(*members)[source]

	Add a member to a group.

Each member can be either an instance of
Member or a dict [http://docs.python.org/3/library/stdtypes.html#dict] containing
nickname and one of email, phone_number, or user_id.

	Parameters:	members (list) – members to add to the group

	Returns:	the results ID of the add call

	Return type:	str

	
classmethod list(former=False)[source]

	List all of your current or former groups.

	Parameters:	former (bool [http://docs.python.org/3/library/functions.html#bool]) – True if former groups should be listed,
False (default) lists current groups

	Returns:	a list of groups

	Return type:	FilterList

	
members()[source]

	Return a list of the members in the group.

	Returns:	the members of the group

	Return type:	FilterList

	
refresh()[source]

	Refresh the group information from the API.

	
remove(member)[source]

	Remove a member from the group.

	Parameters:	member (Member) – the member to remove

	Returns:	True if successful, False otherwise

	Return type:	bool

	
update(name=None, description=None, image_url=None, share=None)[source]

	Change group information.

	Parameters:	
	name (str [http://docs.python.org/3/library/stdtypes.html#str]) – the new name of the group

	description (str [http://docs.python.org/3/library/stdtypes.html#str]) – the new description of the group

	image_url (str [http://docs.python.org/3/library/stdtypes.html#str]) – the URL for the new group image

	share (bool [http://docs.python.org/3/library/functions.html#bool]) – whether to generate a share URL

	
class groupy.object.responses.Member(**kwargs)[source]

	A GroupMe member.

	
identification()[source]

	Return the identification of the member.

A member is identified by their nickname and user_id properties.
If the member does not yet have a GUID, a new one is created and
assigned to them (and is returned alongside the nickname and
user_id properties).

	Returns:	the nickname, user_id, and guid of the member

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod identify(member)[source]

	Return or create an identification for a member.

Member identification is required for adding them to groups. If member
is a dict [http://docs.python.org/3/library/stdtypes.html#dict], it must contain the following keys:

	nickname

	user_id or email or phone_number

If an identification cannot be created then raise an
AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError].

	Parameters:	member – either a Member or a
dict [http://docs.python.org/3/library/stdtypes.html#dict] with the required keys

	Returns:	the identification of member

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	Raises AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError]:

		if an identication cannot be made

	
classmethod list()[source]

	List all known members regardless of group membership.

	Returns:	a list of all known members

	Return type:	FilterList

	
class groupy.object.responses.Message(recipient, **kwargs)[source]

	A GroupMe message.

	Parameters:	recipient (Recipient) – the reciever of the message

	
like()[source]

	Like the message.

	Returns:	True if successful, False otherwise

	Return type:	bool

	
likes()[source]

	Return a FilterList of the
members that like the message.

	Returns:	a list of the members who “liked” this message

	Return type:	FilterList

	
unlike()[source]

	Unlike the message.

	Returns:	True if successful, False otherwise

	Return type:	bool

	
class groupy.object.responses.Bot(**kwargs)[source]

	A GroupMe bot.

Each bot belongs to a single group. Messages posted by the bot are always
posted to the group to which the bot belongs.

	
classmethod create(name, group, avatar_url=None, callback_url=None)[source]

	Create a new bot.

	Parameters:	
	name (str [http://docs.python.org/3/library/stdtypes.html#str]) – the name of the bot

	group (Bot) – the group to which the bot will belong

	avatar_url (str [http://docs.python.org/3/library/stdtypes.html#str]) – the URL for a GroupMe image to be used as the
bot’s avatar

	callback_url (str [http://docs.python.org/3/library/stdtypes.html#str]) – the URL to which each group message will be
POSTed

	Returns:	the new bot

	Return type:	Bot

	
destroy()[source]

	Destroy the bot.

	Returns:	True if successful, False otherwise

	Return type:	bool

	
classmethod list()[source]

	Return a list of your bots.

	Returns:	a list of your bots

	Return type:	FilterList

	
post(text, picture_url=None)[source]

	Post a message to the group of the bot.

	Parameters:	
	text (str [http://docs.python.org/3/library/stdtypes.html#str]) – the message text

	picture_url (str [http://docs.python.org/3/library/stdtypes.html#str]) – the GroupMe image URL for an image

	Returns:	True if successful, False otherwise

	Return type:	bool

	
class groupy.object.responses.User(**kwargs)[source]

	A GroupMe user.

This is you, as determined by your API key.

	
classmethod disable_sms()[source]

	Disable SMS mode.

Disabling SMS mode causes push notifications to resume and SMS text
messages to be discontinued.

	Returns:	True if successful, False otherwise

	Return type:	bool [http://docs.python.org/3/library/functions.html#bool]

	
classmethod enable_sms(duration=4, registration_token=None)[source]

	Enable SMS mode.

Enabling SMS mode causes GroupMe to send a text message for each
message sent to the group.

	Parameters:	
	duration (int [http://docs.python.org/3/library/functions.html#int]) – the number of hours for which to send text
messages

	registration_token (str [http://docs.python.org/3/library/stdtypes.html#str]) – the push notification token for
for which messages should be suppressed; if omitted, the user
will recieve both push notifications as well as text messages

	Returns:	True if successful, False otherwise

	Return type:	bool [http://docs.python.org/3/library/functions.html#bool]

	
classmethod get()[source]

	Return your user information.

	Returns:	your user information

	Return type:	dict [http://docs.python.org/3/library/stdtypes.html#dict]

	
nickname[source]

	Your user name.

The attachments Module

The listers Module

	
class groupy.object.listers.FilterList[source]

	A filterable list.

Acts just like a regular list [http://docs.python.org/3/library/stdtypes.html#list], except it can be filtered using a
special keyword syntax. Also, the first and last items are special
properties.

	
filter(**kwargs)[source]

	Filter the list and return a new instance.

Arguments are keyword arguments only, and can be appended with
operator method names to indicate relationships other than equals.
For example, to filter the list down to only items whose name
property contains “ie”:

new_list = filter_list.filter(name__contains='ie')

As another example, this filters the list down to only those
with a created property that is less than 1234567890:

new_list = filter_list.filter(created__lt=1234567890)

Acceptable operators are:

	__lt: less than

	__gt: greater than

	__contains: contains

	__eq: equal to

	__ne: not equal to

	__le: less than or equal to

	__ge: greater than or equal to

Use of any operator listed here results in a
InvalidOperatorError.

	Returns:	a new list with potentially less items than the original

	Return type:	FilterList

	
first[source]

	The first element in the list.

	
last[source]

	The last element in the list.

	
class groupy.object.listers.MessagePager(group, messages, backward=False)[source]

	A filterable, extendable page of messages.

	Parameters:	
	group (Group) – the group from which to page through messages

	messages (list [http://docs.python.org/3/library/stdtypes.html#list]) – the initial page of messages

	backward (bool [http://docs.python.org/3/library/functions.html#bool]) – True if the oldest message is at index 0, False
otherwise

	
inewer()[source]

	Add in-place the next (newer) page of messages.

	Returns:	True if successful, False otherwise

	Return type:	bool [http://docs.python.org/3/library/functions.html#bool]

	
iolder()[source]

	Add in-place the previous (older) page of messages.

	Returns:	True if successful, False otherwise

	Return type:	bool [http://docs.python.org/3/library/functions.html#bool]

	
newer()[source]

	Return the next (newer) page of messages.

	Returns:	a newer page of messages

	Return type:	MessagePager

	
newest[source]

	Return the newest message in the list.

	Returns:	the newest message in the list

	Return type:	Message

	
older()[source]

	Return the previous (older) page of messages.

	Returns:	an older page of messages

	Return type:	MessagePager

	
oldest[source]

	Return the oldest message in the list.

	Returns:	the oldest message in the list

	Return type:	Message

	
prepend(messages)[source]

	Prepend a list of messages to the list.

	Parameters:	messages (list [http://docs.python.org/3/library/stdtypes.html#list]) – the messages to prepend

 Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Groupy 0.5.0 documentation

 Python Module Index

 c |
 e |
 g |
 o

 			

 		
 c	

 	
 	
 config (Unix, Windows)	
 Module containing configuration values.

 			

 		
 e	

 	
 	
 errors (Unix, Windows)	
 Module containing all GroupMe related error classes.

 			

 		
 g	

 	[image: -]
 	
 groupy	

 	
 	
 groupy.api.endpoint	

 	
 	
 groupy.api.errors	

 	
 	
 groupy.api.status	

 	
 	
 groupy.config	

 	
 	
 groupy.object.attachments	

 	
 	
 groupy.object.listers	

 	
 	
 groupy.object.responses	

 			

 		
 o	

 	
 	
 objects (Unix, Windows)	
 Module that abstracts the API calls into sensible objects.

 Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Groupy 0.5.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U

A

 	

 	add() (groupy.api.endpoint.Members class method)

 	

 	(groupy.object.responses.Group method)

 	

 	API_URL (in module groupy.config)

B

 	

 	BAD_GATEWAY (in module groupy.api.status)

 	BAD_REQUEST (in module groupy.api.status)

 	Bot (class in groupy.object.responses)

 	

 	Bots (class in groupy.api.endpoint)

 	build_url() (groupy.api.endpoint.Endpoint class method)

C

 	

 	clamp() (groupy.api.endpoint.Endpoint static method)

 	config (module)

 	

 	create() (groupy.api.endpoint.Bots class method)

 	

 	(groupy.api.endpoint.DirectMessages class method)

 	(groupy.api.endpoint.Groups class method)

 	(groupy.api.endpoint.Images class method)

 	(groupy.api.endpoint.Likes class method)

 	(groupy.api.endpoint.Messages class method)

 	(groupy.api.endpoint.Sms class method)

 	(groupy.object.responses.Bot class method)

 	CREATED (in module groupy.api.status)

D

 	

 	delete() (groupy.api.endpoint.Sms class method)

 	description() (in module groupy.api.status)

 	destroy() (groupy.api.endpoint.Bots class method)

 	

 	(groupy.api.endpoint.Groups class method)

 	(groupy.api.endpoint.Likes class method)

 	(groupy.object.responses.Bot method)

 	

 	DirectMessages (class in groupy.api.endpoint)

 	disable_sms() (groupy.object.responses.User class method)

E

 	

 	enable_sms() (groupy.object.responses.User class method)

 	Endpoint (class in groupy.api.endpoint)

 	

 	ENHANCE_YOUR_CLAIM (in module groupy.api.status)

 	errors (module)

F

 	

 	filter() (groupy.object.listers.FilterList method)

 	FilterList (class in groupy.object.listers)

 	

 	first (groupy.object.listers.FilterList attribute)

 	FORBIDDEN (in module groupy.api.status)

G

 	

 	get() (groupy.object.responses.User class method)

 	Group (class in groupy.object.responses)

 	GroupMeError

 	Groups (class in groupy.api.endpoint)

 	groupy.api.endpoint (module)

 	groupy.api.errors (module)

 	

 	groupy.api.status (module)

 	groupy.config (module)

 	groupy.object.attachments (module)

 	groupy.object.listers (module)

 	groupy.object.responses (module)

I

 	

 	identification() (groupy.object.responses.Member method)

 	identify() (groupy.object.responses.Member class method)

 	IMAGE_API_URL (in module groupy.config)

 	Images (class in groupy.api.endpoint)

 	index() (groupy.api.endpoint.Bots class method)

 	

 	(groupy.api.endpoint.DirectMessages class method)

 	(groupy.api.endpoint.Groups class method)

 	(groupy.api.endpoint.Messages class method)

 	

 	inewer() (groupy.object.listers.MessagePager method)

 	INTERNAL_SERVER_ERROR (in module groupy.api.status)

 	InvalidOperatorError

 	InvalidResponseError

 	iolder() (groupy.object.listers.MessagePager method)

K

 	

 	KEY_LOCATION (in module groupy.config)

L

 	

 	last (groupy.object.listers.FilterList attribute)

 	like() (groupy.object.responses.Message method)

 	Likes (class in groupy.api.endpoint)

 	

 	likes() (groupy.object.responses.Message method)

 	list() (groupy.object.responses.Bot class method)

 	

 	(groupy.object.responses.Group class method)

 	(groupy.object.responses.Member class method)

M

 	

 	me() (groupy.api.endpoint.Users class method)

 	Member (class in groupy.object.responses)

 	Members (class in groupy.api.endpoint)

 	members() (groupy.object.responses.Group method)

 	

 	Message (class in groupy.object.responses)

 	MessagePager (class in groupy.object.listers)

 	Messages (class in groupy.api.endpoint)

 	messages() (groupy.object.responses.Recipient method)

N

 	

 	newer() (groupy.object.listers.MessagePager method)

 	newest (groupy.object.listers.MessagePager attribute)

 	nickname (groupy.object.responses.User attribute)

 	

 	NO_CONTENT (in module groupy.api.status)

 	NOT_FOUND (in module groupy.api.status)

 	NOT_MODIFIED (in module groupy.api.status)

O

 	

 	objects (module)

 	OK (in module groupy.api.status)

 	

 	older() (groupy.object.listers.MessagePager method)

 	oldest (groupy.object.listers.MessagePager attribute)

P

 	

 	post() (groupy.api.endpoint.Bots class method)

 	

 	(groupy.object.responses.Bot method)

 	(groupy.object.responses.Recipient method)

 	

 	prepend() (groupy.object.listers.MessagePager method)

R

 	

 	Recipient (class in groupy.object.responses)

 	refresh() (groupy.object.responses.Group method)

 	remove() (groupy.api.endpoint.Members class method)

 	

 	(groupy.object.responses.Group method)

 	

 	response() (groupy.api.endpoint.Endpoint class method)

 	

 	(groupy.api.endpoint.Images class method)

 	results() (groupy.api.endpoint.Members class method)

S

 	

 	SERVICE_UNAVAILABLE (in module groupy.api.status)

 	show() (groupy.api.endpoint.Groups class method)

 	

 	Sms (class in groupy.api.endpoint)

U

 	

 	UNAUTHORIZED (in module groupy.api.status)

 	unlike() (groupy.object.responses.Message method)

 	update() (groupy.api.endpoint.Groups class method)

 	

 	(groupy.object.responses.Group method)

 	

 	User (class in groupy.object.responses)

 	Users (class in groupy.api.endpoint)

 Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

 _modules/groupy/object/listers.html

 Navigation

 		
 index

 		
 modules |

 		Groupy 0.5.0 documentation »

 		Module code »

 Source code for groupy.object.listers

from ..api import errors

import operator

[docs]class FilterList(list):
 """A filterable list.

 Acts just like a regular :class:`list`, except it can be filtered using a
 special keyword syntax. Also, the first and last items are special
 properties.
 """
[docs] def filter(self, **kwargs):
 """Filter the list and return a new instance.

 Arguments are keyword arguments only, and can be appended with
 operator method names to indicate relationships other than equals.
 For example, to filter the list down to only items whose ``name``
 property contains "ie":

 .. code-block:: python

 new_list = filter_list.filter(name__contains='ie')

 As another example, this filters the list down to only those
 with a ``created`` property that is less than 1234567890:

 .. code-block:: python

 new_list = filter_list.filter(created__lt=1234567890)

 Acceptable operators are:

 - ``__lt``: less than
 - ``__gt``: greater than
 - ``__contains``: contains
 - ``__eq``: equal to
 - ``__ne``: not equal to
 - ``__le``: less than or equal to
 - ``__ge``: greater than or equal to

 Use of any operator listed here results in a
 :class:`~groupy.api.errors.InvalidOperatorError`.

 :return: a new list with potentially less items than the original
 :rtype: :class:`~groupy.object.listers.FilterList`
 """
 kvops = []
 for k, v in kwargs.items():
 if '__' in k[1:-1]: # don't use it if at the start or end of k
 k, o = k.rsplit('__', 1)
 try:
 op = getattr(operator, o)
 except AttributeError:
 raise errors.InvalidOperatorError("__{}".format(o))
 else:
 op = operator.eq
 kvops.append((k, v, op))
 test = lambda i, k, v, op: hasattr(i, k) and op(getattr(i, k), v)
 criteria = lambda i: all(test(i, k, v, op) for k, v, op in kvops)
 return FilterList(filter(criteria, self))

 @property
[docs] def first(self):
 """The first element in the list.
 """
 try:
 return self[0]
 except IndexError:
 return None

 @property
[docs] def last(self):
 """The last element in the list.
 """
 try:
 return self[-1]
 except IndexError:
 return None

[docs]class MessagePager(FilterList):
 """A filterable, extendable page of messages.

 :param group: the group from which to page through messages
 :type group: :class:`Group<groupy.objects.Group>`
 :param messages: the initial page of messages
 :type messages: :class:`list`
 :param backward: ``True`` if the oldest message is at index 0, ``False``
 otherwise
 :type backward: :obj:`bool`
 """
 def __init__(self, group, messages, backward=False):
 super().__init__(messages)
 self.backward = backward
 self.group = group

 @property
[docs] def oldest(self):
 """Return the oldest message in the list.

 :returns: the oldest message in the list
 :rtype: :class:`~groupy.object.responses.Message`
 """
 return self.first if self.backward else self.last

 @property
[docs] def newest(self):
 """Return the newest message in the list.

 :returns: the newest message in the list
 :rtype: :class:`~groupy.object.responses.Message`
 """
 return self.last if self.backward else self.first

[docs] def prepend(self, messages):
 """Prepend a list of messages to the list.

 :param messages: the messages to prepend
 :type messages: :class:`list`
 """
 for each in messages:
 self.insert(0, each)

[docs] def newer(self):
 """Return the next (newer) page of messages.

 :returns: a newer page of messages
 :rtype: :class:`~groupy.object.listers.MessagePager`
 """
 return self.group.messages(after=self.newest.id)

[docs] def older(self):
 """Return the previous (older) page of messages.

 :returns: an older page of messages
 :rtype: :class:`~groupy.object.listers.MessagePager`
 """
 return self.group.messages(before=self.oldest.id)

[docs] def inewer(self):
 """Add in-place the next (newer) page of messages.

 :returns: ``True`` if successful, ``False`` otherwise
 :rtype: :obj:`bool`
 """
 new = self.newer()
 if not new:
 return False
 if self.backward:
 self.extend(self.newer())
 else:
 self.prepend(self.newer())
 return True

[docs] def iolder(self):
 """Add in-place the previous (older) page of messages.

 :returns: ``True`` if successful, ``False`` otherwise
 :rtype: :obj:`bool`
 """
 old = self.older()
 if not old:
 return False
 if self.backward:
 self.prepend(self.older())
 else:
 self.extend(self.older())
 return True

 © Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_modules/groupy/api/endpoint.html

 Navigation

 		
 index

 		
 modules |

 		Groupy 0.5.0 documentation »

 		Module code »

 Source code for groupy.api.endpoint

from .. import config
from . import errors

import requests

from io import BytesIO
from PIL import Image as PImage
import time
import json

[docs]class Endpoint:
 '''An API endpoint capable of building a url and extracting data from the
 response.

 This class serves as the base class for all of the API endpoints.
 '''
 url = config.API_URL

 @classmethod
[docs] def build_url(cls, path=None, *args):
 """Build and return a url extended with *path* and filled in with
 args.

 :param str path: a suffix for the final URL. If *args* are present,
 this should be a python format string pertaining to the given
 args.
 :param args: a list of arguments for the format string *path*.
 :type args: :class:`list`
 :returns: a complete URL
 :rtype: str
 """
 try:
 url = '/'.join([cls.url, path.format(*args)])
 except AttributeError:
 if path is None:
 url = cls.url
 else:
 url = '/'.join([cls.url, str(path)])
 except TypeError:
 url = cls.url
 return '?'.join([url, 'token={}'.format(config.API_KEY)])

 @classmethod
[docs] def response(cls, r):
 """Extract the data from the API response *r*.

 This method essentially strips the actual response of the envelope.

 :param r: the HTTP response from an API call
 :type r: :class:`requests.Response`
 :returns: API response data
 :rtype: JSON
 """
 try:
 data = r.json()
 except ValueError:
 raise errors.InvalidResponseError(r)
 if data['meta'].get("errors"):
 raise errors.GroupMeError(data['meta'])
 return data["response"]

 @staticmethod
[docs] def clamp(value, lower, upper):
 """Utility method for clamping a *value* between a *lower* and an
 upper value.

 :param value: the value to clamp
 :param lower: the "smallest" possible value
 :param upper: the "largest" possible value
 :returns: *value* such that ``lower <= value <= upper``
 """
 return max(lower, min(value, upper))

[docs]class Groups(Endpoint):
 """Endpoint for the groups API.

 Groups can be listed, loaded, created, updated, and destroyed.
 """
 url = '/'.join([Endpoint.url, 'groups'])

 @classmethod
[docs] def show(cls, group_id):
 """Return a specific group by its *group_id*.

 :param str group_id: the ID of the group to show.
 :returns: the group with the given *group_id*
 :rtype: :class:`dict`
 """
 r = requests.get(
 cls.build_url(group_id)
)
 return cls.response(r)

 @classmethod
[docs] def index(cls, page=1, per_page=500, former=False):
 """Return a list of groups.

 :param int page: the page of groups to return
 :param int per_page: the number of groups in the page
 :param former: ``True`` if former groups should be listed instead of
 current groups, ``False`` otherwise
 :type former: :obj:`bool`
 :returns: a list of groups
 :rtype: :class:`list`
 """
 per_page = cls.clamp(per_page, 1, 500)
 r = requests.get(
 cls.build_url('former') if former else cls.build_url(),
 params={
 'page': page,
 'per_page': per_page
 }
)
 return cls.response(r)

 @classmethod
[docs] def create(cls, name, description=None, image_url=None, share=True):
 """Create a new group.

 :param str name: the name of the new group
 :param str description: the description of the new group
 :param str image_url: the group avatar image as a GroupMe image URL
 :param share: ``True`` if a link to join should be generated, ``False``
 otherwise
 :type share: :obj:`bool`
 :returns: the new group
 :rtype: :class:`dict`
 """
 r = requests.post(
 cls.build_url(),
 params={
 'name': name,
 'description': description,
 'image_url': image_url,
 'share': share
 }
)
 return cls.response(r)

 @classmethod
[docs] def update(cls, group_id,
 name=None, description=None, share=None, image_url=None):
 """Update the information for a group.

 :param str group_id: the ID of the group to update
 :param str name: the new name of the group
 :param str description: the new description of the group
 :param share: True if a share link should be generated, False
 otherwise
 :type share: :obj:`bool`
 :param str image_url: the GroupMe image URL for the new group avatar.
 :returns: the modified group
 :rtype: :class:`dict`
 """
 r = requests.post(
 cls.build_url('{}/update', group_id),
 params={
 'name': name,
 'description': description,
 'image_url': image_url,
 'share': share
 }
)
 return cls.response(r)

 @classmethod
[docs] def destroy(cls, group_id):
 """Destroy (or leave) a group.

 .. note::

 If you are not the owner of a group, you can not destroy it.

 :param str group_id: the ID of the group to destroy/leave
 """
 r = requests.post(
 cls.build_url('{}/destroy', group_id)
)
 return cls.response(r)

[docs]class Members(Endpoint):
 """Endpoint for the members API.

 Members can be added and removed from a group, and the results of adding
 members can be obtained.
 """
 url = '/'.join([Endpoint.url, 'groups'])

 @classmethod
[docs] def add(cls, group_id, *members):
 """Add one or more members to a group.

 :param str group_id: the ID of the group to which the members should
 be added
 :param members: the members to add.
 :type members: :class:`list`
 :returns: the ``results_id`` for this request
 :rtype: :class:`dict`
 """
 r = requests.post(
 cls.build_url('{}/members/add', group_id),
 data=json.dumps({'members': members}),
 headers={'content-type': 'application/json'})
 return cls.response(r)

 @classmethod
[docs] def results(cls, group_id, result_id):
 """Check the result of adding one or more members.

 :param str group_id: the ID of the group to which the add call was made
 :param str result_id: the GUID returned by the add call
 :returns: a list of successfully added members
 :rtype: :class:`list`
 """
 r = requests.get(
 cls.build_url('{}/members/results/{}', group_id, result_id)
)
 return cls.response(r)

 @classmethod
[docs] def remove(cls, group_id, member_id):
 """Remove a member from a group.

 :param str group_id: the ID of the group from which the member should
 be removed
 :param str member_id: the ID of the member to remove
 """
 r = requests.post(
 cls.build_url('{}/members/{}/remove', group_id, member_id)
)
 return cls.response(r)

[docs]class Messages(Endpoint):
 """Endpoint for the messages API.

 Messages can be listed and created.
 """
 url = '/'.join([Endpoint.url, 'groups'])

 @classmethod
[docs] def index(cls, group_id,
 before_id=None, since_id=None, after_id=None, limit=100):
 """List the messages from a group.

 Listing messages gives the most recent 100 by default. Additional
 messages can be obtained by specifying a reference message, thereby
 facilitating paging through messages.

 Use ``before_id`` and ``after_id`` to "page" through messages.
 ``since_id`` is odd in that it returns the *most recent* messages
 since the reference message, which means there may be messages missing
 between the reference message and the oldest message in the returned
 list of messages.

 .. note::

 Only one of ``before_id``, ``after_id``, or ``since_id`` can be
 specified in a single call.

 :param str group_id: the ID of the group from which to list messages
 :param str before_id: a reference message ID; specify this to list
 messages just prior to it
 :param str since_id: a reference message ID; specify this to list
 the *most recent* messages after it
 (**not** the messages right after the reference message)
 :param str after_id: a reference message ID; specifying this will
 return the messages just after the reference message
 :param int limit: a limit on the number of messages returned (between
 1 and 100 inclusive)
 :returns: a :class:`dict` containing ``count`` and ``messages``
 :rtype: :class:`dict`
 """
 limit = cls.clamp(limit, 1, 100)
 r = requests.get(
 cls.build_url('{}/messages', group_id),
 params={
 'after_id': after_id,
 'limit': limit,
 'before_id': before_id,
 'since_id': since_id
 }
)
 return cls.response(r)

 @classmethod
[docs] def create(cls, group_id, text, *attachments):
 """Create a new message in a group.

 All messages must have either text or one attachment. Note that while
 the API provides for an unlimited number of attachments, most clients
 can only handle one of each attachment type (location, image, split, or
 emoji).

 :param str group_id: the ID of the group in which to create the message
 :param str text: the text of the message
 :param attachments: a list of attachments to include
 :type attachments: :class:`list`
 :returns: the created message
 :rtype: :class:`dict`
 """
 r = requests.post(
 cls.build_url('{}/messages', group_id),
 data=json.dumps({
 'message': {
 'source_guid': str(time.time()),
 'text': text,
 'attachments': attachments
 }
 }),
 headers={'content-type': 'application/json'}
)
 return cls.response(r)

[docs]class DirectMessages(Endpoint):
 """Endpoint for the direct message API.
 """
 url = '/'.join([Endpoint.url, 'direct_messages'])

 @classmethod
[docs] def index(cls, other_user_id, before_id=None, since_id=None, after_id=None):
 """List the direct messages with another user.

 :param str other_user_id: the ID of the other party
 :param str before_id: a reference message ID; specify this to list
 messages prior to it
 :returns: a list of direct messages
 :rtype: :class:`list`
 """
 r = requests.get(
 cls.build_url(),
 params={
 'other_user_id': other_user_id,
 'before_id': before_id,
 'since_id': since_id,
 'after_id': after_id
 }
)
 return cls.response(r)

 @classmethod
[docs] def create(cls, recipient_id, text, *attachments):
 """Create a direct message to a recipient user.

 :param str recipient_id: the ID of the recipient
 :param str text: the message text
 :param attachments: a list of attachments to include
 :type attachments: :class:`list`
 :returns: the created direct message
 :rtype: :class:`dict`
 """
 r = requests.post(
 cls.build_url(),
 data=json.dumps({
 'direct_message': {
 'source_guid': str(time.time()),
 'recipient_id': recipient_id,
 'text': text,
 'attachments': attachments
 }
 }),
 headers={'content-type': 'application/json'}
)
 return cls.response(r)

[docs]class Likes(Endpoint):
 """Endpoint for the likes API.

 Likes can be created or destroyed.

 .. note::

 The ``conversation_id`` is poorly documented. For messages in a group,
 it corresponds to the ``group_id`` (or ``id`` since they seem to always
 be identical). For direct messages, it corresponds to the ``user_id`` of
 both conversation participants sorted lexicographically and concatenated
 with a plus sign ("+").

 """
 url = '/'.join([Endpoint.url, 'messages'])

 @classmethod
[docs] def create(cls, conversation_id, message_id):
 """Like a message.

 :param str conversation_id: the ID of the group or recipient
 :param str message_id: the ID of the message
 """
 r = requests.post(
 cls.build_url('{}/{}/like', conversation_id, message_id)
)
 return cls.response(r)

 @classmethod
[docs] def destroy(cls, conversation_id, message_id):
 """Unlike a message.

 :param str conversation_id: the ID of the group or recipient
 :param str message_id: the ID of the message
 """
 r = requests.post(
 cls.build_url('{}/{}/unlike', conversation_id, message_id)
)
 return cls.response(r)

[docs]class Bots(Endpoint):
 """Endpoint for the bots API.

 Bots can be listed, created, updated, and destroyed. Bots can also post
 messages to groups.
 """
 url = '/'.join([Endpoint.url, 'bots'])

 @classmethod
[docs] def index(cls):
 """List bots.

 :returns: a list of bots
 :rtype: :class:`list`
 """
 r = requests.get(
 cls.build_url()
)
 return cls.response(r)

 @classmethod
[docs] def create(cls, name, group_id, avatar_url=None, callback_url=None):
 """Create a new bot.

 :param str name: the name of the bot
 :param str group_id: the ID of the group to which the bot will belong
 :param str avatar_url: the GroupMe image URL for the bot's avatar
 :param str callback_url: the callback URL for the bot
 :returns: the new bot
 :rtype: :class:`dict`
 """
 r = requests.post(
 cls.build_url(),
 params={
 'name': name,
 'group_id': group_id,
 'avatar_url': avatar_url,
 'callback_url': callback_url
 }
)
 return cls.response(r)

 @classmethod
[docs] def post(cls, bot_id, text, picture_url=None):
 """Post a message to a group as a bot.

 :param str bot_id: the ID of the bot
 :param str text: the message text
 :param str picture_url: the GroupMe image URL for a picture
 :returns: the created message
 :rtype: :class:`dict`
 """
 r = requests.post(
 cls.build_url('post'),
 params={
 'bot_id': bot_id,
 'text': text,
 'picture_url': picture_url
 }
)
 return cls.response(r)

 @classmethod
[docs] def destroy(cls, bot_id):
 """Destroy a bot.

 :param str bot_id: the ID of the bot to destroy
 """
 r = requests.post(
 cls.build_url('destroy'),
 params={'bot_id': bot_id}
)
 return cls.response(r)

[docs]class Users(Endpoint):
 """Endpoint for the users API.
 """
 url = '/'.join([Endpoint.url, 'users'])

 @classmethod
[docs] def me(cls):
 """Get the user's information.

 :returns: the user's information
 :rtype: :class:`dict`
 """
 r = requests.get(
 cls.build_url('me')
)
 return cls.response(r)

[docs]class Sms(Endpoint):
 """Endpoint for the SMS API.

 SMS mode can be enabled or disabled.
 """
 url = '/'.join([Endpoint.url, 'users/sms_mode'])

 @classmethod
[docs] def create(cls, duration=4, registration_id=None):
 """Enable SMS mode.

 :param int duration: duration of SMS mode in hours (max of 48)
 :param str registration_id: the push registration_id or token to
 suppress (if omitted, SMS and push notifications will both
 be enabled)
 """
 duration = cls.clamp(duration, 1, 48)
 r = requests.post(
 cls.build_url(),
 params={
 'duration': duration,
 'registration_id': registration_id
 }
)
 return cls.response(r)

 @classmethod
[docs] def delete(cls):
 """Disable SMS mode.
 """
 r = requests.post(
 cls.build_url('delete')
)
 return cls.response(r)

[docs]class Images(Endpoint):
 """Endpoint for the image service API.

 GroupMe images are created through an upload service that returns a URL at
 which it can be accessed.
 """
 url = '/'.join([config.IMAGE_API_URL, 'pictures'])

 @classmethod
[docs] def response(cls, r):
 """Extract the data from the image service API response *r*.

 This method basically returns the inner "payload."

 :param r: the HTTP response from an API call
 :type r: :class:`requests.Response`
 :returns: API response data
 :rtype: json
 """
 try:
 data = r.json()
 except ValueError:
 raise errors.InvalidResponseError(r)
 return data['payload']

 @classmethod
[docs] def create(cls, image):
 """Submit a new image.

 :param image: object with a file-like interface and containing an
 image
 :type image: :obj:`file`
 :returns: the URL at which the image can be accessed
 :rtype: :class:`dict`
 """
 r = requests.post(
 cls.build_url(),
 files={'file': image}
)
 return cls.response(r)

 @classmethod
 def download(cls, url):
 r = requests.get(url)
 image = BytesIO(r.content)
 return PImage.open(image)

 © Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

_modules/groupy/api/status.html

 Navigation

 		
 index

 		
 modules |

 		Groupy 0.5.0 documentation »

 		Module code »

 Source code for groupy.api.status

"""
.. module:: objects
 :platform: Unix, Windows
 :synopsis: Module that abstracts the API calls into sensible objects.

.. moduleauthor:: Robert Grant <rhgrant10@gmail.com>

The ``status`` module contains API response status code constants and a method
that returns the textual description of such a constant.

"""

__all__ = [
 'OK', 'CREATED', 'NO_CONTENT', 'NOT_MODIFIED', 'BAD_REQUEST',
 'UNAUTHORIZED', 'FORBIDDEN', 'NOT_FOUND', 'ENHANCE_YOUR_CLAIM',
 'INTERNAL_SERVER_ERROR', 'BAD_GATEWAY', 'SERVICE_UNAVAILABLE',
 'description'
]

OK = 200
"""Success
"""

CREATED = 201
"""Resource was created successfully
"""

NO_CONTENT = 204
"""Resource was deleted successfully
"""

NOT_MODIFIED = 304
"""There was no new data to return
"""

BAD_REQUEST = 400
"""Invalid format or invalid data is specified in the request
"""

UNAUTHORIZED = 401
"""Authentication credentials were missing or incorrect
"""

FORBIDDEN = 403
"""The request was understood, but it has been refused
"""

NOT_FOUND = 404
"""The URI requested is invalid or the requested resource does not exist
"""

ENHANCE_YOUR_CLAIM = 420
"""You are being rate limited
"""

INTERNAL_SERVER_ERROR = 500
"""Something unexpected occurred
"""

BAD_GATEWAY = 502
"""GroupMe is down or being upgraded
"""

SERVICE_UNAVAILABLE = 503
"""The GroupMe servers are up but overloaded with requests
"""

[docs]def description(code):
 """Return the text description for a code.

 :param int code: the HTTP status code
 :returns: the text description for the status code
 :rtype: :obj:`str`
 """
 return {
 OK: 'Success!',
 CREATED: 'Resource was created successfully',
 NO_CONTENT: 'Resource was deleted successfully',
 NOT_MODIFIED: 'There was no new data to return',
 BAD_REQUEST: ('Invalid format or invalid data is specified in the '
 'request'),
 UNAUTHORIZED: 'Authentication credentials were missing or incorrect',
 FORBIDDEN: 'The request was understood, but it has been refused',
 NOT_FOUND: ('The URI requested is invalid or the requested resource '
 'does not exist'),
 ENHANCE_YOUR_CLAIM: 'You are being rate limited',
 INTERNAL_SERVER_ERROR: 'Something unexpected occurred',
 BAD_GATEWAY: 'GroupMe is down or being upgraded',
 SERVICE_UNAVAILABLE: ('The GroupMe servers are up but overloaded with '
 'requests')
 }.get(code, '!Unknown!')

 © Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

_modules/groupy/config.html

 Navigation

 		
 index

 		
 modules |

 		Groupy 0.5.0 documentation »

 		Module code »

 Source code for groupy.config

"""
.. module:: config
 :platform: Unix, Windows
 :synopsis: Module containing configuration values.

.. moduleauthor:: Robert Grant <rhgrant10@gmail.com>

The ``config`` module contains all the configuration options.

"""

Set this to the base URL for the GroupMe API (default is
'https://api.groupme.com/v3').
API_URL = 'https://api.groupme.com/v3'
"""The URL for the GroupMe API
"""

Set this to the base URL for the GroupMe image service (default is
'https://image.groupme.com').
IMAGE_API_URL = 'https://image.groupme.com'
"""The URL for the GroupMe Image Service API
"""

Set this to the location of the file containing your (default is
'~/.groupy.key', which corresponds to '/home/<user>/.groupy.key' on Linux,
and 'C:\Users\<user>\.groupy.key' on Windows).
KEY_LOCATION = '~/.groupy.key'
"""Full path to the file in which your access token can be found
"""

 © Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

_modules/groupy/api/errors.html

 Navigation

 		
 index

 		
 modules |

 		Groupy 0.5.0 documentation »

 		Module code »

 Source code for groupy.api.errors

"""
.. module:: errors
 :platform: Unix, Windows
 :synopsis: Module containing all GroupMe related error classes.

.. moduleauthor:: Robert Grant <rhgrant10@gmail.com>

The ``error`` module contains all of the exceptions thrown by the
GroupMe API.

"""

[docs]class GroupMeError(Exception):
 """A general GroupMe error.
 """
 pass

[docs]class InvalidResponseError(GroupMeError):
 """Error representing an unparsable response from the API.
 """
 pass

[docs]class InvalidOperatorError(NotImplementedError):
 """Error thrown when an unsupported filter is used.
 """
 pass

 © Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

_modules/groupy/object/responses.html

 Navigation

 		
 index

 		
 modules |

 		Groupy 0.5.0 documentation »

 		Module code »

 Source code for groupy.object.responses

from ..api import status
from ..api import errors
from ..api import endpoint
from .listers import FilterList, MessagePager
from .attachments import AttachmentFactory

from datetime import datetime
from collections import Counter

import time

__all__ = ['Recipient', 'Group', 'Member', 'Message', 'Bot', 'User']

class ApiResponse(object):
 """Base class for all API responses.

 .. note::

 All keyword arguments become properties.

 """
 def __init__(self, **kwargs):
 for k, v in kwargs.items():
 setattr(self, k, v)

[docs]class Recipient(ApiResponse):
 """Base class for Group and Member.

 Recipients can post and recieve messages.

 :param endpoint: the API endpoint for messages
 :type endpoint: :class:`~groupy.api.endpoint.Endpoint`
 :param str mkey: the :class:`dict` key under which the endpoint returns
 messages
 :param str idkey: the :class:`dict` key whose value represents the key for
 posting and retrieving messages
 """
 def __init__(self, endpoint, mkey, idkey, **kwargs):
 self._endpoint = endpoint
 self._mkey = mkey
 self._idkey = kwargs.get(idkey)
 self.message_count = kwargs.pop('count', 0)
 super().__init__(**kwargs)

 # Splits text into chunks so that each is less than the chunk_size.
 @staticmethod
 def _chunkify(text, chunk_size=450):
 if text is None:
 return [None]
 chunks = []
 while len(text) > chunk_size:
 portion = text[:chunk_size]
 # Find the index of the final whitespace character.
 i = len(portion.rsplit(None, 1)[0])
 # Append the chunk up to that character.
 chunks.append(portion[:i].strip())
 # Re-assign the text to all but the appended chunk.
 text = text[i:].strip()
 chunks.append(text)
 return chunks

 def __len__(self):
 """Return the number of messages in the recipient.
 """
 return self.message_count

[docs] def post(self, text, *attachments):
 """Post a message to the recipient.

 Although the API limits messages to 450 characters, this method will
 split the text component into as many as necessary and include the
 attachments in the final message. Note that a list of messages sent is
 always returned, even if it contains only one element.

 :param str text: the message text
 :param attachments: the attachments to include
 :type attachments: :class:`list`
 :returns: a list of raw API responses (sorry!)
 :rtype: :class:`list`
 """
 if not text and not attachments:
 raise ValueError('must be one attachment or text')
 *chunks, last = self._chunkify(text)
 sent = []
 for chunk in chunks:
 sent.append(self._endpoint.create(self._idkey, chunk))
 sent.append(self._endpoint.create(self._idkey, last, *attachments))
 return sent

[docs] def messages(self, before=None, since=None, after=None, limit=None):
 """Return a page of messages from the recipient.

 :param str before: a reference message ID
 :param str since: a reference message ID
 :param str after: a reference message ID
 :param int limit: maximum number of messages to include in the page
 :returns: a page of messages
 :rtype: :class:`~groupy.object.listers.MessagePager`
 """
 # Messages obtained with the 'after' parameter are in reversed order.
 backward = after is not None
 # Fetch the messages.
 try:
 r = self._endpoint.index(self._idkey, before_id=before,
 since_id=since, after_id=after)
 except errors.InvalidResponseError as e:
 # NOT_MODIFIED, in this case, means no more messages.
 if e.args[0].status_code == status.NOT_MODIFIED:
 return None
 raise e
 # Update the message count and grab the messages.
 self.message_count = r['count']
 messages = (Message(self, **m) for m in r[self._mkey])
 return MessagePager(self, messages, backward=backward)

[docs]class Group(Recipient):
 """A GroupMe group.
 """
 def __init__(self, **kwargs):
 messages = kwargs.pop('messages', {})
 members = kwargs.pop('members')
 super().__init__(endpoint.Messages, 'messages', 'id', **kwargs)

 self.id = kwargs.get('id')
 self.group_id = kwargs.get('group_id')
 self.name = kwargs.get('name')
 self.type = kwargs.get('type')
 self.description = kwargs.get('description')
 self.image_url = kwargs.get('image_url')
 self.creator_user_id = kwargs.get('creator_user_id')
 self.created_at = datetime.fromtimestamp(kwargs.get('created_at'))
 self.updated_at = datetime.fromtimestamp(kwargs.get('updated_at'))
 ca = messages.get('last_message_created_at')
 if ca >= 0:
 self.last_message_created_at = datetime.fromtimestamp(ca)
 self.last_message_id = messages.get('last_message_id')
 else:
 self.last_message_created_at = None
 self.last_message_id = None
 self.message_count = messages.get('count')
 self._members = [Member(**m) for m in members]
 self.share_url = kwargs.get('share_url')

 # Undocumented properties.
 # 'max_members' for groups, 'max_memberships' for former groups.
 for k in ['max_members', 'max_memberships']:
 if k in kwargs:
 self.max_members = kwargs[k]
 break
 else:
 self.max_members = None
 self.office_mode = kwargs.get('office_mode')
 self.phone_number = kwargs.get('phone_number')

 def __repr__(self):
 return "{}, {}/{} members, {} messages".format(
 self.name, len(self.members()),
 self.max_members, self.message_count)

 @classmethod
[docs] def list(cls, former=False):
 """List all of your current or former groups.

 :param former: ``True`` if former groups should be listed,
 ``False`` (default) lists current groups
 :type former: :obj:`bool`
 :returns: a list of groups
 :rtype: :class:`~groupy.object.listers.FilterList`
 """
 # Former groups come as a single page.
 if former:
 groups = endpoint.Groups.index(former=True)
 return FilterList(Group(**g) for g in groups)
 # Current groups are listed in pages.
 page = 1
 groups = []
 next_groups = endpoint.Groups.index(page=page)
 while next_groups:
 groups.extend(next_groups)
 page += 1
 try:
 next_groups = endpoint.Groups.index(page=page)
 except errors.InvalidResponseError:
 next_groups = None
 return FilterList(Group(**g) for g in groups)

[docs] def refresh(self):
 """Refresh the group information from the API.
 """
 self.__init__(**endpoint.Groups.show(self.id))

[docs] def update(self, name=None, description=None, image_url=None, share=None):
 """Change group information.

 :param str name: the new name of the group
 :param str description: the new description of the group
 :param str image_url: the URL for the new group image
 :param share: whether to generate a share URL
 :type share: :obj:`bool`
 """
 endpoint.Groups.update(name=name, description=description,
 image_url=image_url, share=share)
 self.refresh()

[docs] def members(self):
 """Return a list of the members in the group.

 :returns: the members of the group
 :rtype: :class:`~groupy.object.listers.FilterList`
 """
 return FilterList(self._members)

[docs] def add(self, *members):
 """Add a member to a group.

 Each member can be either an instance of
 :class:`~groupy.object.responses.Member` or a :class:`dict` containing
 ``nickname`` and one of ``email``, ``phone_number``, or ``user_id``.

 :param members: members to add to the group
 :type members: :class:`list`
 :returns: the results ID of the add call
 :rtype: str
 """
 ids = (Member.identify(m) for m in members)
 r = endpoint.Members.add(self.id, *ids)
 return r['results_id']

[docs] def remove(self, member):
 """Remove a member from the group.

 :param member: the member to remove
 :type member: :class:`~groupy.object.responses.Member`
 :returns: ``True`` if successful, ``False`` otherwise
 :rtype: bool
 """
 try:
 endpoint.Members.remove(self.id, member.user_id)
 except errors.InvalidResponse as e:
 return e.args[0].status_code == status.OK
 return True

[docs]class Member(Recipient):
 """A GroupMe member.
 """
 def __init__(self, **kwargs):
 super().__init__(endpoint.DirectMessages, 'direct_messages',
 'user_id', **kwargs)
 self.id = kwargs.get('id')
 self.user_id = kwargs.get('user_id')
 self.nickname = kwargs.get('nickname')
 self.muted = kwargs.get('muted')
 self.image_url = kwargs.get('image_url')
 self.autokicked = kwargs.get('autokicked')
 self.app_installed = kwargs.get('app_installed')
 self.guid = kwargs.get('guid', None)
 self.message_count = None

 @classmethod
[docs] def list(cls):
 """List all known members regardless of group membership.

 :returns: a list of all known members
 :rtype: :class:`~groupy.objects.FilterList`
 """
 groups = Group.list()
 members = {}
 for g in groups:
 for m in g.members():
 if m.user_id not in members:
 members[m.user_id] = {
 'member': m,
 'name': Counter({m.nickname: 1})
 }
 else:
 members[m.user_id]['name'][m.nickname] += 1
 renamed = []
 for d in members.values():
 d['member'].nickname = d['name'].most_common()[0][0]
 renamed.append(d['member'])
 return FilterList(renamed)

 def __repr__(self):
 return self.nickname

 @property
 def guid(self):
 if not self._guid:
 self._guid = self._next_guid()
 return self._guid

 @guid.setter
 def guid(self, value):
 self._guid = value

 # Create and return a new guid based on the current time.
 @staticmethod
 def _next_guid():
 return str(time.time())

[docs] def identification(self):
 """Return the identification of the member.

 A member is identified by their ``nickname`` and ``user_id`` properties.
 If the member does not yet have a GUID, a new one is created and
 assigned to them (and is returned alongside the ``nickname`` and
 ``user_id`` properties).

 :returns: the ``nickname``, ``user_id``, and ``guid`` of the member
 :rtype: :class:`dict`
 """
 return {
 'nickname': self.nickname,
 'user_id': self.user_id,
 'guid': self._guid # new guid set if nonexistant
 }

 @classmethod
[docs] def identify(cls, member):
 """Return or create an identification for a member.

 Member identification is required for adding them to groups. If member
 is a :class:`dict`, it must contain the following keys:

 - ``nickname``
 - ``user_id`` or ``email`` or ``phone_number``

 If an identification cannot be created then raise an
 :exc:`AttributeError`.

 :param member: either a :class:`~groupy.object.responses.Member` or a
 :class:`dict` with the required keys
 :returns: the identification of member
 :rtype: :class:`dict`
 :raises AttributeError: if an identication cannot be made
 """
 try:
 return member.identification()
 except AttributeError:
 try:
 for id_type in ['user_id', 'email', 'phone_number']:
 if id_type in member:
 if 'guid' not in member:
 member['guid'] = cls._next_guid()
 return {
 'nickname': member['nickname'],
 'id_type': member[id_type],
 'guid': member['guid']
 }
 except AttributeError:
 raise AttributeError('no nickname')
 raise AttributeError('no user_id, email, or phone_number')

[docs]class Message(ApiResponse):
 """A GroupMe message.

 :param recipient: the reciever of the message
 :type recipient: :class:`~groupy.object.responses.Recipient`
 """
 _user = None

 def __init__(self, recipient, **kwargs):
 super().__init__()
 self._recipient = recipient

 self.id = kwargs.get('id')
 self.source_guid = kwargs.get('source_guid')
 self.created_at = datetime.fromtimestamp(kwargs.get('created_at'))
 self.user_id = kwargs.get('user_id')
 self.group_id = kwargs.get('group_id')
 self.recipient_id = kwargs.get('recipient_id')
 self.name = kwargs.get('name')
 self.avatar_url = kwargs.get('avatar_url')
 self.text = kwargs.get('text')
 self.system = kwargs.pop('system', False)
 self.favorited_by = kwargs.get('favorited_by')
 self.attachments = [
 AttachmentFactory.create(**a) for a in kwargs.get('attachments')]

 # Determine the conversation id (different for direct messages)
 try: # assume group message
 self._conversation_id = recipient.group_id
 except AttributeError: # oops, its a direct message
 if self._user is None:
 self._user = User.get()
 participants = [self._user.user_id, recipient.user_id]
 self._conversation_id = '+'.join(sorted(participants))

 def __repr__(self):
 msg = "{}: {}".format(self.name, self.text or "")
 if self.attachments:
 for a in self.attachments:
 msg += " +<{}>".format(str(a))
 return msg

 def __len__(self):
 """Return the length of the message text.
 """
 return len(self.text)

[docs] def like(self):
 """Like the message.

 :returns: ``True`` if successful, ``False`` otherwise
 :rtype: bool
 """
 try:
 endpoint.Likes.create(self._conversation_id, self.id)
 except errors.InvalidResponse as e:
 return e.args[0].status_code == status.OK
 return True

[docs] def unlike(self):
 """Unlike the message.

 :returns: ``True`` if successful, ``False`` otherwise
 :rtype: bool
 """
 try:
 endpoint.Likes.destroy(self._conversation_id, self.id)
 except errors.InvalidResponse as e:
 return e.args[0].status_code == status.OK
 return True

[docs] def likes(self):
 """Return a :class:`~groupy.object.listers.FilterList` of the
 members that like the message.

 :returns: a list of the members who "liked" this message
 :rtype: :class:`~groupy.object.listers.FilterList`
 """
 try:
 liked = filter(
 lambda m: m.user_id in self.favorited_by,
 self._recipient.members())
 except AttributeError:
 liked = []
 for i in self.favorited_by:
 if i == self._user.user_id:
 liked.append(self._user)
 elif i == self.recipient_id:
 liked.append(self._recipient)
 return FilterList(liked)

[docs]class Bot(ApiResponse):
 """A GroupMe bot.

 Each bot belongs to a single group. Messages posted by the bot are always
 posted to the group to which the bot belongs.
 """
 def __init__(self, **kwargs):
 super().__init__()
 self.bot_id = kwargs.get('bot_id')
 self.gorup_id = kwargs.get('group_id')
 self.name = kwargs.get('name')
 self.avatar_url = kwargs.get('avatar_url')
 self.callback_url = kwargs.get('callback_url')

 def __repr__(self):
 return self.name

 @classmethod
[docs] def create(cls, name, group, avatar_url=None, callback_url=None):
 """Create a new bot.

 :param str name: the name of the bot
 :param group: the group to which the bot will belong
 :type group: :class:`~groupy.object.responses.Bot`
 :param str avatar_url: the URL for a GroupMe image to be used as the
 bot's avatar
 :param str callback_url: the URL to which each group message will be
 POSTed
 :returns: the new bot
 :rtype: :class:`~groupy.object.responses.Bot`
 """
 bot = endpoint.Bots.create(name, group.group_id, avatar_url, callback_url)
 return cls(**bot)

 @classmethod
[docs] def list(cls):
 """Return a list of your bots.

 :returns: a list of your bots
 :rtype: :class:`~groupy.object.listers.FilterList`
 """
 return FilterList(Bot(**b) for b in endpoint.Bots.index())

[docs] def post(self, text, picture_url=None):
 """Post a message to the group of the bot.

 :param str text: the message text
 :param str picture_url: the GroupMe image URL for an image
 :returns: ``True`` if successful, ``False`` otherwise
 :rtype: bool
 """
 try:
 endpoint.Bot.post(self.bot_id, text, picture_url)
 except errors.InvalidResponse as e:
 return e.args[0].status_code == status.CREATED
 return True

[docs] def destroy(self):
 """Destroy the bot.

 :returns: ``True`` if successful, ``False`` otherwise
 :rtype: bool
 """
 try:
 endpoint.Bot.destroy(self.bot_id)
 except errors.InvalidResponse as e:
 return e.args[0].status_code == status.OK
 return True

[docs]class User(ApiResponse):
 """A GroupMe user.

 This is you, as determined by your API key.
 """
 def __init__(self, **kwargs):
 super().__init__()
 self.created_at = datetime.fromtimestamp(kwargs.get('created_at'))
 self.udpated_at = datetime.fromtimestamp(kwargs.get('updated_at'))
 self.id = kwargs.get('id')
 self.user_id = kwargs.get('user_id')
 self.name = kwargs.get('name')
 self.email = kwargs.get('email')
 self.phone_number = kwargs.get('phone_number')
 self.image_url = kwargs.get('image_url')
 self.sms = kwargs.get('sms')

 def __repr__(self):
 return self.name

 @property
[docs] def nickname(self):
 """Your user name.
 """
 return self.name

 @classmethod
[docs] def get(cls):
 """Return your user information.

 :returns: your user information
 :rtype: :class:`dict`
 """
 return cls(**endpoint.Users.me())

 @classmethod
[docs] def enable_sms(cls, duration=4, registration_token=None):
 """Enable SMS mode.

 Enabling SMS mode causes GroupMe to send a text message for each
 message sent to the group.

 :param int duration: the number of hours for which to send text
 messages
 :param str registration_token: the push notification token for
 for which messages should be suppressed; if omitted, the user
 will recieve both push notifications as well as text messages
 :returns: ``True`` if successful, ``False`` otherwise
 :rtype: :obj:`bool`
 """
 try:
 endpoint.Sms.create(duration, registration_token)
 except errors.InvalidResponse as e:
 return e.args[0].status_code == status.CREATED
 return True

 @classmethod
[docs] def disable_sms(cls):
 """Disable SMS mode.

 Disabling SMS mode causes push notifications to resume and SMS text
 messages to be discontinued.

 :returns: ``True`` if successful, ``False`` otherwise
 :rtype: :obj:`bool`
 """
 try:
 endpoint.Sms.delete()
 except errors.InvalidResponse as e:
 return e.args[0].status_code == status.OK
 return True

 © Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_static/down-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Groupy 0.5.0 documentation »

 All modules for which code is available

		groupy.api.endpoint

		groupy.api.errors

		groupy.api.status

		groupy.config

		groupy.object.listers

		groupy.object.responses

 © Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Groupy 0.5.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

_static/file.png

_static/up-pressed.png

pages/docplan.html

 Navigation

 		
 index

 		
 modules |

 		Groupy 0.5.0 documentation »

Introduction

		
		GroupMe

		
		
		It’s a group messaging app

		
		Group messaging

		Direct messaging

		Web, Android, iOS, yada yada yada

		
		GroupMe API

		
		The good parts

		The bad parts

		
		Groupy

		
		What is it?

		What can it do for me?

		How easy is it?

Installation

		Using pip

		From source

Quickstart

		Whoami?

		
		The order of things

		
		groups -> messages, members

		members -> direct messages

		
		Fetching stuff

		
		Groups

		Members

		Messages

		
		Messaging

		
		Messaging groups

		Messaging members

		Liking messages

		Inspecting messages

		
		Groups and Members

		
		Adding members to a group

		Removing members from a group

		
		Bots

		
		Creating a bot

		Listing bots

		Making a bot talk

		
		Common tasks

		
		Adding a member from one group to another

		Restarting a group

		Ping everyone in a group

		List all members from all groups

		Finding the first message in a group

Basic Usage

Listing Things

Groups, Members, and Bots can be listed directly.

>>> import groupy
>>> groups = groupy.Group.list()
>>> members = groupy.Member.list()
>>> bots = groupy.Bot.list()

The object lists are returned as a FilterList. These
behave just like the built-in list [http://docs.python.org/3/library/stdtypes.html#list] does, but with some additional
features: first, and
last, and

>>> groups.first == groups[0]
True
>>> groups.last == groups[-1]
True

The most useful feature of a groupy.objects.FilterList, however, is
its filter() method. It parses whatever
keyword arguments are passed to it and filters the list such that only the
items meeting all criteria are included. The keywords correspond to object
properties, but also indicate how to test the relation to the value of the
keyword argument. Thus a keyword-value pair such as name='Bob' would keep
only those items with a name property equal to "Bob", whereas a pair
like age__lt=20 keeps only those items with an age property less than
20.

Some simple examples:

>>> from groupy import Group
>>> groups = Group.list()
>>> for g in groups:
... print(g.name)
...
My Family
DevTeam #6
Friday Night Trivia
>>> for g in groups.filter(name__contains='am'):
... print(g.name)
My Family
DevTeam #6
>>>
>>> members = groups.first.members()
>>> for m in members:
... print(m.nickname)
...
Dan the Man
Manuel
Fred
Dan
>>> for m in members.filter(nickname='Dan'):
... print(m.nickname)
...
Dan
>>> for m in members.filter(nickname__contains='Dan'):
... print(m.nickname)
...
Dan the Man
Dan
>>> for m in members.filter(nickname__ge='F'):
... print(m.nickname)
...
Manuel
Fred

Groups

From a groupy.objects.Group, you can list its
:class:`groupy.objects.Member`s and :class:`groupy.objects.Message`s.

>>> from groupy import Group
>>> groups = Group.list()
>>> group = groups.first
>>> messages = group.messages()
>>> members = group.memers()

A group returns all of its members in a single list. So determining the number
of members in a group is familiar.

>>> len(members)
5

Messages, however, are a different matter. Since there may be thousands of
messages in a group, messages are returned in pages.

>>> len(messages)
100

The total number of messages in the group is in message_count.

To page through the messages, use groupy.objects.MessagePager.older() and
groupy.objects.MessagePager.newer().

>>> older = messages.older()
>>> newer = messages.newer()

There are also methods for collecting a newer or older page of messages into
one list: groupy.objects.MessagePager.iolder() and
groupy.objects.MessagePager.inewer(). An example of using the former to
retrieve all messages in a group:

>>> from groupy import Group
>>> group = Group.list().first
>>> messages = group.messages()
>>> while messages.iolder():
... pass
>>> len(messages) == group.message_count
True

New messages can be posted to a group as well.

>>> from group import Group
>>> group = Group.list().first
>>> group.post('Hello to you')
>>> print(group.messages().newest.text)
'Hello to you'

Note

Posting a message does not affect message_count. However, retrieving
any page of messages does update it.

Messages

Unlike groupy.objects.Group`s, :class:`groupy.objects.Member`s, and
:class:`groupy.objects.Bot`s, :class:`groupy.objects.Message`s **cannot** be
listed directly. Instead, :class:`groupy.objects.Message`s are listed either
from :class:`groupy.objects.Group or groupy.objects.Member instances.

To list the messages from a group, first obtain the group and then list its
messages.

>>> from groupy import Group
>>> group = Group.list().first
>>> messages = group.messages()

To list the direct messages with another member, obtain the member and then
list the messages.

>>> from groupy import Member
>>> member = Member.list().first
>>> messages = member.messages()

Messages have several properties. Let’s look at a few of them. Messages have a
timestamp indicating when the message was created.

>>> message = messages.newest
>>> message.created_at
2014-4-29 12:19:05

As with other API objects, timestamp data is returned as
datetime.datetime [http://docs.python.org/3/library/datetime.html#datetime.datetime] instances.

Messages also contain information about the member who posted it.

>>> message.user_id
'0123456789'
>>> message.name
'Kevin'
>>> message.avatar_url
'http://i.groupme.com/a01b23c45d56e78f90a01b12c3456789'

Of course, messages have text and attachments. A message may or may not have
text or attachments, but every message must have one or the other.

>>> message.text
'Hello'
>>> message.attachments
[Image(url='http://i.groupme.com/a01b23c45d56e78f90a01b12c3456789')]

Although the majority of messages will have just one attachment, there is no
limit on the number of attachments. In fact, despite most clients being
incapable of displaying them, the API doesn’t even limit the number of each
kind of attachment. For example, a single message might have two images, three
locations, and one emoji.

There are multiple types of messages. System messages are messages that are not
sent by a member, but generated by member actions. Many things generate system
messages, including member changes, group updates (name, avatar, etc.), member
changes (nickname, avatar, etc.), and changing the topic.

Additionally there are group messages and direct messages. Group messages are
messages in a group, whereas direct messages are messages between two members.

Each message has a few properties that can be used to differentiate the types.

>>> message.group_id
'1234567890'
>>> message.recipient_id
None
>>> message.system
False

In the above example, we can see that message.system is False, which
indicates that the message was sent by a member, not the system. We can also
see that although the message has a message.group_id, it does not have a
message.recipient_id, which means it is a group message. Had it been a
system message, message.system would have been True. Had it been a
direct message, message.group_id would have been None and
message.recipient_id would contain a valid user ID.

Lastly, each message contains a list of user IDs to indicate which members have
“liked” it.

>>> message.favorited_by
['2345678901', '3456789012']

Because often more information about the member is desired, a list of actual
groupy.objects.Member instances can be retrieved using the
groupy.objects.Message.likes() method.

>>> message.likes()
[Rob, Jennifer, Vlad]

Messages can also be liked and unliked.

>>> message.like()
True
>>> message.unlike()
True

Note

Currently, the message instance itself does not update its own
attributes. You must re-fetch the message.

Members

groupy.objects.Member instances represent other GroupMe users. Finding
members can be accomplished in one of three ways. First, all the members you’ve
seen thus far can be listed directly.

>>> from groupy import Member
>>> members = Member.list()

Note

The name (or nickname) of each member listed from
group.objects.Member.list() is the most frequent of the names that
the member uses among the groups of which you are both members.

Secondly, members may be listed from a group. Of course, this lists only the
members of one group.

>>> from groupy import Group
>>> group = Group.list().first
>>> members = group.members()

Lastly, members may be listed from a message. This lists the members who have
“liked” the message.

>>> messages = group.messages()
>>> message = message.newest
>>> members = message.likes()

Each member has a user ID, a nickname, and a URL indicating their avatar image
that are specific to the group from which the member was listed.

>>> member = members.first
>>> member.user_id
'0123456789'
>>> member.nickname
'Bill'
>>> member.avatar_url
'http://i.groupme.com/a01b23c45d56e78f90a01b12c3456789'

Members have one more property of interest: muted. This indicates whether
the member has that group muted.

>>> member1, member2 = members[:2]
>>> member1.muted
False
>>> member2.muted
True

Messaging a member and retrieving the messages between you and the member is
done in the same way as when messaging a group.

>>> member.post("Hello")
>>> member.messages().newest.text
'Hello'

Bots

		Can be listed

		Can be created

		Can be modified

		Can post messages

		Can be deleted

Advanced Usage

		
		Working with lists

		
		Filter lists

		Messsage pagers

		
		Creating attachments

		
		Images

		Locations

		Emoji

		
		When it just doesn’t work out...

		
		Leaving a group

		Disbanding (destroying) a group you own

		Destroying a bot

		
		The SMS mode

		
		Enabling and you

		Disabling

 © Copyright 2014, Robert Grant.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

